skip to main content


Search for: All records

Creators/Authors contains: "Cody Gonzalez, Jun Ma"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. A self-powered, and self-actuating lithium ion battery (LIB) has the potential to achieve large deformation while still maintaining actuation force. The energy storage capability allows for continual actuation without an external power source once charged. Reshaping the actuator requires a nonuniform distribution of charge and/or bending stiffness. Spatially varying the state of charge and bending stiffness along the length of a segmented unimorph configuration have the effect of improving the tailorability of the deformed actuator. In this paper, an analytical model is developed to predict the actuation properties of the segmented unimorph beam to determine its usefulness as an actuator. The model predicts the free deflection, blocked deflection, and blocked force at the tip as a function of spatially varying state of charge and bending stiffness. The main contribution of the paper is the development of blocked deflection over the length of the segmented unimorph, which has not yet been considered in the literature. The model is verified using experimental data and commercial finite element analysis. 
    more » « less
  2. Silicon anodes in lithium ion batteries have high theoretical capacity and large volumetric expansion. In this paper, both characteristics are used in a segmented unimorph actuator consisting of several Si composite anodes on a copper current collector. Each unimorph segment is self-actuating during discharge and the discharge power can be provided to external circuits. With no external forces and zero current draw, the unimorph segments will maintain their actuated shape. Stresspotential coupling allows for the unimorph actuator to be self-sensing because bending changes the anodes’ potential. An analytical model is derived from a superposition of pure bending and extensional deformation forces and moments induced by the cycling of a Si anode. An approximately linear relationship between axial strain and state of charge of the anode drives the bending displacement of the unimorph. The segmented device consists of electrically insulated and individually controlled segments of the Si-coated copper foil to allow for variable curvature throughout the length of the beam. The model predicts the free deflection along the length of the beam and the blocked force. Tip deflection and blocked force are shown for a range of parameters including segment thicknesses, beam length, number of segments, and state of charge. The potential applications of this device include soft robots and dexterous 3D grippers. 
    more » « less